Total synthesis of amphidinolactone A and its absolute configuration

Masahiro Hangyou, Haruaki Ishiyama, Yohei Takahashi, Takaaki Kubota, Jun'ichi Kobayashi *
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

A R T I C L E I N F O

Article history:

Received 27 November 2008
Revised 8 January 2009
Accepted 13 January 2009
Available online 19 January 2009

Keywords:

Amphidinium sp.
Macrolide
Amphidinolactone A
Synthesis
Stereochemistry

Abstract

Asymmetric synthesis of amphidinolactone A, a cytotoxic macrolide from the cultured dinoflagellate Amphidinium sp., has been accomplished. Absolute configuration of amphidinolactone A was concluded to be $\mathbf{1}$ from comparison of the NMR data and $[\alpha]_{D}$ values of synthetic and natural amphidinolactone A. © 2009 Elsevier Ltd. All rights reserved.

Amphidinolactone A(1) is a cytotoxic 13 -membered macrolide, which was isolated from a symbiotic dinoflagellate Amphidinium sp. (Y-25) separated from an Okinawan marine acoel flatworm Amphiscolops sp. ${ }^{1}$ The relative stereochemistry of amphidinolactone A (1) has been elucidated on the basis of extensive NMR experiments. ${ }^{1}$

1
In order to determine the absolute stereochemistry of amphidinolactone A (1), we planned an asymmetric total synthesis of amphidinolactone $\mathrm{A}(\mathbf{1})$ as shown in Scheme 1. Amphidinolactone A (1) could be obtained by ring-closing metathesis (RCM) of 2 through esterification of the $\mathrm{C}-1-\mathrm{C}-5$ segment (4) and the C-6-C20 segment (3), the latter of which was derived from epoxide 5 and acetylene $\mathbf{6}$ via alkynylation of oxirane. In this Letter, we describe the total synthesis of amphidinolactone A (1) and its absolute configuration to be 1.

The synthesis of the C-6-C-13 segment ($\mathbf{1 5)}$ of $\mathbf{1}$ is summarized in Scheme 2. 2,3-Di-O-cyclohexylidene-(R)-(+)-glyceraldehyde 7^{2} was treated with vinylmagnesium bromide to give $\mathbf{8}$ as an

[^0]inseparable 5:3 diastereomeric mixture. Protection of the hydroxy group at C-11 in $\mathbf{8}$ as benzyl ether yielded $\mathbf{9}$, which was subjected to oxidative cleavage of terminal olefin followed by Wittig reaction to provide a $4: 1(E: Z)$ mixture of ester (10). Reduction of ester 10 with DIBAL gave alcohol 11, which was oxidized with Dess-Martin periodinane ${ }^{3}$ and then subjected to Yamamoto's silver-catalyzed asymmetric allylation ${ }^{4,5}$ to give a 5:3:2 mixture of $\mathbf{1 2}, \mathbf{1 3}$ and Z isomers, respectively. At this stage, alcohols 12 and 13 were separated by silica gel column chromatography. Removal of benzyl group in 12 followed by protection of hydroxy groups provided MOM ether, which was treated with p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ to afford diol $14 .{ }^{6}$ Selective mesylation of diol 14 followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH provided the C-6-C-13 segment (15).

The absolute configuration at $\mathrm{C}-8$ in $\mathbf{1 2}$ was confirmed by a modified Mosher's method. ${ }^{7}$ As shown in Figure 1, the values of $\Delta \delta$ [$\delta(S$-MTPA ester $)-\delta(R$-MTPA ester $)]$ for $\mathrm{H}-6$ and $\mathrm{H}-7$ were positive, while the values of $\Delta \delta$ for $\mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-12$ and $\mathrm{H}-13$ were negative, suggesting that the absolute configuration at $\mathrm{C}-8$ was R.

To confirm the absolute configuration at C-11 in 12, alcohol 12 was converted into 17 as follows (Scheme 3). Alcohol $\mathbf{1 2}$ was protected as t-butyldimethylsilyl ether (16), which was treated with Na in liq. NH_{3} to provide alcohol 17.

The absolute configuration at $\mathrm{C}-11$ in 17 was elucidated by a modified Mosher's method. ${ }^{7}$ The values of $\Delta \delta$ [$\delta(S$-MTPA ester) $-\delta$ (R-MTPA ester)] for $\mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9$ and $\mathrm{H}-10$ were negative, while the $\Delta \delta$ values for $\mathrm{H}-12$ and $\mathrm{H}-13$ were positive, suggesting that the absolute configuration at $\mathrm{C}-11$ was S (Fig. 2).

The synthesis of the C-1-C-5 segment (4) is summarized in Scheme 4. Commercially available alcohol $\mathbf{1 8}$ was treated with PDC in DMF to provide the C-1-C-5 segment (4). Known acetylene

1

2

3
$+$

4

Scheme 1. Retrosynthetic analysis of amphidinolactone A (1).

Scheme 2. Synthesis of C-6-C-13 segment (15) of amphidinolactone A (1). Reagents and conditions: (a) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 40 \mathrm{~min},(60 \%)$; (b) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$,
 (80\%); (f) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (g) allyltrimethoxysilane, AgF, (R)-p-Tol-BINAP, MeOH, $-20^{\circ} \mathrm{C}, 4 \mathrm{~h},(\mathbf{1 2}$ (44%) and $\mathbf{1 3}$ (27\%) for 2 steps, respectively); (h) Na , liq. $\mathrm{NH}_{3},-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, (98%); (i) $\mathrm{MOMCl},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 14 \mathrm{~h}(84 \%)$; (j) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{rt}, 50 \mathrm{~min}(71 \%)$; (k) MsCl, pyridine, $0^{\circ} \mathrm{C}, 40 \mathrm{~min}$ and (1) $\mathrm{K}_{2} \mathrm{CO}{ }_{3}, \mathrm{MeOH}$, rt, 30 min (73% for 2 steps).

Figure 1. $\Delta \delta$ Values $\left[\Delta \delta\right.$ (in ppm) $\left.=\delta_{S}-\delta_{R}\right]$ obtained for (S) - and (R)-MTPA esters at C-8 of alcohol 12.
6^{8} and the C-6-C-13 segment (15) in hand, we turned to alkynylation of oxirane under Yamaguchi condition ${ }^{9}$ (Scheme 4). Coupling of $\mathbf{1 5}$ with known acetylene $\mathbf{6}$ using n - BuLi and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided the alcohol 19. Reduction of 19 with hydrogen and Lindlar's catalyst followed by esterification of 4 with the alcohol using 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) gave ester.

12

Scheme 3. Conversion of alcohol 12 into alcohol 17. Reagents and conditions: (a) TBSCl, imidazole, DMF, rt, 12 h , (67\%); (b) Na , liq. $\mathrm{NH}_{3},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, (82\%).

Scheme 4. Alkynylation of C-6-C-13 segment (15) with C-14-C-20 segment ($\mathbf{6}$) and ring-closing methathesis of 19. Reagents and conditions: (a) PDC, DMF, rt, 7 h , (61%); (b) n-BuLi, $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{THF}-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}(99 \%)$; (c) H_{2}, Lindlar's Pd-cat. quinoline, benzene, rt, 13 h ; (d) 4, $\mathrm{EDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$; (e) Grubbs 1st generation catalyst $\mathrm{CH}_{2} \mathrm{Cl}, 2 \mathrm{~h}$ and (f) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{rt}, 48 \mathrm{~h}(\mathbf{1}(4 \%)$ and $\mathbf{2 0}(2 \%)$ for 4 steps, respectively).

Figure 2. $\Delta \delta$ Values $\left[\Delta \delta\right.$ (in ppm) $\left.=\delta_{S}-\delta_{R}\right]$ obtained for (S) - and (R)-MTPA esters at C-11 of alcohol 17.

The ester was subjected to RCM by using Grubbs' first-generation catalyst ${ }^{10}$ followed by removal of MOM groups to furnish amphidinolactone $A(\mathbf{1}){ }^{11}$ The synthetic material $\mathbf{1}$ was spectroscopically (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, HRMS) ${ }^{12}$ identical with natural product and also had an optical rotation, $[\alpha]_{\mathrm{D}}^{21}-65$ ($c 0.033$, benzene), in good agreement with the literature value $\left[\right.$ lit., ${ }^{1}[\alpha]_{D}^{19}-62$ (c 0.065 , benzene)]. Thus, the absolute stereochemistry of amphidinolactone $\mathrm{A}(\mathbf{1})$ was established as $8 R, 11 S$ and $12 R$.

Acknowledgements

We thank S. Oka and A. Tokumitsu, Center for Instrumental Analysis, Hokkaido University, for ESIMS and FABMS measurements. This work was partly supported by a from the Uehara Memorial Foundation and Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

1. Takahashi, Y.; Kubota, T.; Kobayashi, J. Heterocycles 2007, 72, 567-572.
2. Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem. 1995, 60, 585-587.
3. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156; (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
4. Keck allylation ${ }^{13}$ using allyltributyltin (2 equiv) and $20 \mathrm{~mol} \%$ catalyst prepared from $\mathrm{Ti}\left({ }^{(} \mathrm{PrO}\right)_{4}$ and (R)-BINOL did not proceed.
5. Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 3701-3703.
6. Since removal of benzyl group proceeded in low yield at a later stage, the hydroxy groups were protected as MOM ether.
7. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
8. Nakanishi, A.; Mori, K. Biosci., Biotechnol., Biochem. 2005, 69, 1007-1013.
9. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391-394.
10. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
11. Because of unstability of synthetic intermediates from 19 to 1 , the yield was low.
12. 1: colorless oil; $[\alpha]_{D}^{21}-65$ (c 0.033, benzene); IR (film) 3390 and $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 5.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 5.59(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-14), 5.54$ (1 H, ddd, $J=15.7,7.5,0.7 \mathrm{~Hz}, \mathrm{H}-9$), 5.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 5.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$), 5.30 ($1 \mathrm{H}, \mathrm{ddd}, J=10.7,9.6,4.3 \mathrm{~Hz}, \mathrm{H}-5$), 5.24 (1 H , ddd, $J=15.7,7.5,0.7 \mathrm{~Hz}, \mathrm{H}-10), 5.03(1 \mathrm{H}, \mathrm{ddd}, J=8.9,7.6,0.7 \mathrm{~Hz}, \mathrm{H}-12), 4.00(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-8), 3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 2.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}), 2.51$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$), 2.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$), 2.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}$), 2.19 (1H, m, H-2a), 2.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}$), 2.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$), 1.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4b), 1.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$), 0.96 ($1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-20$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 171.74,136.68,132.18,131.24,131.20,130.74,127.45,125.11$, 124.98, 74.00, 73.87, 72.39, 35.92, 32.07, 29.50, 26.00, 25.61, 22.96, 20.89, 14.40; ESIMS (positive) $\mathrm{m} / \mathrm{z} 357(\mathrm{M}+\mathrm{Na})^{+}$; HRESIMS $\mathrm{m} / \mathrm{z} 357.2036(\mathrm{M}+\mathrm{Na})^{+}$, calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}, 357.2042$.
13. Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544.

[^0]: * Corresponding author. Tel.: +81 11706 3239; fax: +81 117064989.

 E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

